THE SPECTRAL THEORY OF SECOND ORDER
TWO-POINT DIFFERENTIAL OPERATORS
IV. THE ASSOCIATED PROJECTIONS
AND THE SUBSPACE $S_\infty(L)$

JOHN LOCKER

ABSTRACT. This paper is the final part in a four-part
series on the spectral theory of a two-point differential oper-
ator L in $L^2[0,1]$, where L is determined by a formal differ-
ential operator $l = -D^2 + q$ and by independent boundary
values B_1, B_2. For the family of projections \(\{Q_k\}_{k=1}^{\infty} \cup \{Q'_k\}_{k=0}^{\infty} \) which map $L^2[0,1]$ onto the general-
ized eigenspaces of L, it is determined whether or not the
family of all finite sums of these projections is uniformly
bounded in norm. Equivalently, for the subspace $S_\infty(L)$
consisting of all $u \in L^2[0,1]$ with $u = \sum_{k=1}^{\infty} Q_0 u +
\sum_{k=0}^{\infty} Q'_k u$, it is determined whether or not
$S_\infty(L) = \overline{S_\infty(L)} = L^2[0,1]$. It is necessary to modify the
projections and $S_\infty(L)$ in the multiple eigenvalue case.

1. Introduction. In this paper we conclude our four-part series
on the spectral theory of a linear second order two-point differential
operator L in the complex Hilbert space $L^2[0,1]$. Let L be the
differential operator in $L^2[0,1]$ defined by

$$D(L) = \{u \in H^2[0,1] \mid B_i(u) = 0, \ i = 1, 2\},$$

$$Lu = l u,$$

where

$$l = -\left(\frac{d}{dt} \right)^2 + q(t) \left(\frac{d}{dt} \right)^0$$

is a second order formal differential operator on the interval $[0,1]$ with
$q \in C[0,1]$, B_1, B_2 are linearly independent boundary values given by

$$B_1(u) = a_1 u'(0) + b_1 u'(1) + a_0 u(0) + b_0 u(1),$$

$$B_2(u) = c_1 u'(0) + d_1 u'(1) + c_0 u(0) + d_0 u(1),$$

Received by the editors on September 15, 1994.