ON 2-SG-SEMISIMPLE RINGS

DRISS BENNIS, KUI HU AND FANGGUI WANG

ABSTRACT. In this paper, we investigate 2-SG-semisimple rings which are a particular kind of quasi-Frobenius rings over which all modules are periodic of period 2. Namely, we show that local 2-SG-semisimple rings are the same as the known Artinian valuation rings. Also, a relation between Dedekind domains and 2-SG-semisimple rings is established.

1. Introduction. Throughout this paper, all rings are commutative with identity element and all modules are unital. It is convenient to use m-local or (simply) local to refer to not necessarily Noetherian rings with a unique maximal ideal m. We assume that the reader is familiar with the Gorenstein homological algebra (some references are [9, 10, 12]).

For a ring R and a positive integer $n \geq 1$, an R-module M is said to be n-strongly Gorenstein projective (n-SG-projective for short), if there exists an exact sequence of R-modules

$$0 \rightarrow M \rightarrow P_n \rightarrow \cdots \rightarrow P_1 \rightarrow M \rightarrow 0,$$

where each P_i is projective, such that $\text{Hom}_R(-, Q)$ leaves the sequence exact whenever Q is a projective R-module (see [6]). The 1-SG-projective module is simply called strongly Gorenstein projective (SG-projective for short) (see [5]). An extension of these kinds of modules was given in [3]. Namely, we have, for integers $n \geq 1$ and $m \geq 0$, a module M is called (n, m)-SG-projective if there exists an exact sequence of modules,

$$0 \rightarrow M \rightarrow Q_n \rightarrow \cdots \rightarrow Q_1 \rightarrow M \rightarrow 0,$$

Keywords and phrases. 2-SG-projective, 2-SG-semisimple rings, quasi-Frobenius rings, factors of Dedekind domains, Artinian valuation rings.

Received by the editors on January 2, 2013, and in revised form on July 23, 2013.

DOI:10.1216/RMJ-2015-45-4-1093 Copyright ©2015 Rocky Mountain Mathematics Consortium

1093
where pd(Q_i) $\leq m$ for $1 \leq i \leq n$, such that Ext$^i(M, Q) = 0$ for any $i > m$ and for any projective module Q. A general study of rings over which every module is (n, m)-SG-projective was done in [4], and such rings are called (n, m)-SG. Thus, as in classical homological dimension, the (n, m)-SG rings with small integers n and m would be of interest. Let us call by n-SG-semisimple, for an integer $n \geq 1$, the $(n, 0)$-SG rings. From [4, Corollary 2.8], n-SG-semisimple rings are a particular kind of quasi-Frobenius rings. In [8], it was proved that a local ring is 1-SG-semisimple if and only if it contains a unique non-trivial ideal.

The aim of this paper is to study 2-SG-semisimple rings. We prove that 2-SG-semisimple is the same as the well-known Artinian serial rings (see Corollary 2.7). Recall that a ring is called serial if it is a finite direct product of valuation rings, where a ring (not necessarily a domain) is called valuation if the lattice of all its ideals is linearly ordered under inclusions (see, for example, [11, pages 10 and 11]). Namely, we prove that a local ring is 2-SG-semisimple if and only if it is an Artinian valuation ring (see Theorem 2.6). Also, a relation between Dedekind domains and 2-SG-semisimple rings is established in Proposition 2.9.

Before starting, we need to recall some useful results about quasi-Frobenius rings (for more details about these kinds of rings, see, for example, [14]). The quasi-Frobenius rings have several characterizations, and here, we only need the following ones:

Theorem 1.1 ([14], Theorems 1.50, 7.55 and 7.56). For a ring R, the following are equivalent:

(i) R is quasi-Frobenius;
(ii) R is Artinian and self-injective;
(iii) every projective R-module is injective;
(iv) every injective R-module is projective;
(v) R is Noetherian and, for every ideal I, Ann(Ann(I)) = I, where Ann(I) denotes the annihilator of I.

For the local case, we have the following result:

Theorem 1.2 ([13], Theorems 221). Let R be an m-local and zero-dimensional Noetherian ring. The following are equivalent:

(i) R is quasi-Frobenius;
(ii) $\operatorname{Ann}(m)$ is a principal ideal.

We have the following structural characterization of quasi-Frobenius rings.

Proposition 1.3. A ring R is quasi-Frobenius if and only if $R = R_1 \times \cdots \times R_n$, where each R_i is a local quasi-Frobenius ring.

2. Main results. We aim to give an equivalent characterization of 2-SG-semisimple rings. The following leads us to restrict the study to the case of local rings.

Lemma 2.1 ([4], Proposition 2.13). A ring R is 2-SG-semisimple if and only if $R = R_1 \times \cdots \times R_n$, where each R_i is a local 2-SG-semisimple ring.

Before giving the main result, we need the following lemmas.

The following result is a characterization of Artinian valuation local rings.

Lemma 2.2 ([2], Proposition 8.8). Let R be an Artinian m-local ring. Then the following assertions are equivalent:

(i) every ideal is principal;
(ii) the maximal ideal m is principal;
(iii) R is a valuation ring.

In this case every ideal I of R is of the form a^nR where a generates m.

The two results below investigate the 2-SG-projective modules over local quasi-Frobenius rings.

Lemma 2.3. Let R be a local quasi-Frobenius ring and M a finitely generated R-module. If M is 2-SG-projective, then there is an exact sequence $0 \to M \to F_2 \to F_1 \to M \to 0$ where F_1 and F_2 are free and
finitely generated R-modules. Furthermore, if M is an ideal of R, then the exact sequence can be of the form:

$$0 \rightarrow M \rightarrow R \rightarrow R^n \rightarrow M \rightarrow 0,$$

where n is a positive integer.

Proof. Let M be a finitely generated 2-SG-projective R-module. Then, by [18, Theorem 3.14], there exists an exact sequence of R-modules

$$0 \rightarrow M \rightarrow F_2 \rightarrow F_1 \rightarrow M \rightarrow 0$$

with F_1 and F_2 are finitely generated projective R-modules. Notice that R is local, so F_1 and F_2 are finitely generated free and the first assertion follows.

Now, suppose that M is an ideal of R. Decomposing the exact sequence $0 \rightarrow M \rightarrow F_2 \rightarrow F_1 \rightarrow M \rightarrow 0$ to get the short exact sequences: $0 \rightarrow M \rightarrow F_2 \rightarrow K \rightarrow 0$ and $0 \rightarrow K \rightarrow F_1 \rightarrow M \rightarrow 0$. Since R is quasi-Frobenius, F_1 and R are injective R-modules. Then, we can apply the dual of the horseshoe lemma [15, Note after Lemma 6.20] to the short exact sequences above with the canonical one, $0 \rightarrow M \rightarrow R \rightarrow R/M \rightarrow 0$, to get the following commutative diagram with exact columns and rows:

$$
\begin{array}{ccc}
0 & 0 & 0 \\
\uparrow & \uparrow & \uparrow \\
0 & R/M & Q & \rightarrow M \rightarrow 0 \\
\uparrow & \uparrow & \uparrow \\
0 & R & R \oplus F_1 & \rightarrow F_1 \rightarrow 0 \\
\uparrow & \uparrow & \uparrow \\
0 & M & F_2 & \rightarrow K \rightarrow 0 \\
\uparrow & \uparrow & \uparrow \\
0 & 0 & 0 \\
\end{array}
$$

From the top horizontal sequence, Q is a Gorenstein projective and finitely generated R-module. Then, using the middle vertical sequence, Q has finite projective dimension. This shows, using [12, Proposition 2.27], that Q is projective and then free (since R is local). Then, there is a positive integer n such that $Q \cong R^n$. Finally, combining the top horizontal sequence with the left vertical one to get the desired sequence. \qed
Corollary 2.4. Let R be a local quasi-Frobenius ring, and let a be a zero-divisor element of R. If the principal ideal aR is 2-SG-projective, then $\text{Ann} (a)$ is also principal and there are exact sequences of the form:

$$0 \rightarrow aR \rightarrow R \rightarrow R \rightarrow aR \rightarrow 0$$
$$0 \rightarrow \text{Ann} (a) \rightarrow R \rightarrow R \rightarrow \text{Ann} (a) \rightarrow 0$$
$$0 \rightarrow R/aR \rightarrow R \rightarrow R/ \text{Ann} (a) \rightarrow 0$$

Proof. By Lemma 2.3, we have an exact sequence of the form:

$$0 \rightarrow R/aR \rightarrow R^n \rightarrow aR \rightarrow 0$$

where n is a positive integer. By the Schanuel lemma [15, Theorem 9.4 (i)], the above exact sequence with the following canonical one:

$$0 \rightarrow \text{Ann} (aR) \rightarrow R \rightarrow aR \rightarrow 0$$

implies that $\text{Ann} (a) \oplus R^n \cong R/aR \oplus R$. This shows that $\text{Ann} (a)$ must be principal and $n = 1$ which help to construct the desired sequences.

The structure of modules over Artinian serial rings is given by the following well-known result.

Lemma 2.5 ([11], Theorems 5.6). Let R be an Artinian serial ring. Then every R-module is a direct sum of cyclic modules.

Now we are in position to give the main result.

Theorem 2.6. An m-local ring R is 2-SG-semisimple if and only if it is an Artinian valuation ring.

Proof. If R is 2-SG-semisimple, then it is quasi-Frobenius (by [4, Corollary 2.8]). Then, by Theorem 1.2, $\text{Ann} (m)$ is principal. This shows, using Corollary 2.4 and Theorem 1.1, that $m = \text{Ann} (\text{Ann} (m))$ is principal. Therefore, R is a valuation ring (by Lemma 2.2). Conversely, assume that R is an Artinian valuation ring. Obviously, R is quasi-Frobenius with only principal ideals. Then, for every zero-divisor element a of R, we have the exact sequences $0 \rightarrow \text{Ann} (a) \rightarrow R \rightarrow$
\[aR \to 0 \text{ and } 0 \to aR = \text{Ann}(\text{Ann}(a)) \to R \to \text{Ann}(a) \to 0. \] Combining these sequences, we deduce that \(aR \) is 2-SG-projective. Then, from Corollary 2.4, the cyclic module \(R/aR \) is also 2-SG-projective and so are all cyclic modules including the free ones. Therefore, Lemma 2.5 with [3, Proposition 2.3] show that every module is 2-SG-projective and therefore \(R \) is 2-SG-semisimple. \(\square \)

From Lemma 2.1, the structure of 2-SG-semisimple rings is immediately deduced as follows.

Corollary 2.7. A ring \(R \) is 2-SG-semisimple if and only if it is an Artinian serial ring.

To construct examples of 2-SG-semisimple rings, one can use the well-known result that nontrivial factor rings of Dedekind domains are principal Artinian serial rings, which means that nontrivial factor rings of Dedekind domains are 2-SG-semisimple (see, for example, [17, Corollary, page 278]). The following result (Proposition 2.9) shows that the Dedekind domains is closely related to the 2-SG-semisimple rings in the sense that the converse of the well-known result above holds true. To prove this result, we use the following lemma.

Lemma 2.8. Let \(R \) be a domain and \(P \) a maximal ideal of \(R \) which is finitely generated. Then \(P \) is invertible if and only if \(P \rangle (\text{i.e., } PR_P) \) is a principal ideal of \(R_P \).

Proof. By [16, Theorem 8.4.2], \(P \) is invertible if and only if \(P_m \) is principal for any maximal ideal \(m \) of \(R \). Since \(P \) is maximal, \(P_m = R_m \) for any maximal ideal \(m \) other than \(P \). \(\square \)

Proposition 2.9. A domain \(R \) is Dedekind if and only if every nontrivial factor ring of \(R \) is 2-SG-semisimple.

Proof. If every nontrivial factor ring of \(R \) is 2-SG-semisimple, then, by [13, Theorem 90], \(R \) must be one-dimensional and Noetherian. So, by [1, Theorem 3], \(R \) must be a Dedekind domain. We give a direct proof here. Let \(P \) be a maximal ideal of \(R \), and let \(a \) be an element in \(P \) which is not in \(P^2 \). Since \(R/P^2 \) is a QF-ring, by Theorem 1.1, \((\bar{a}) = \text{Ann}(\text{Ann}(\bar{a})) \). Since \((P/P^2)^2 = 0\), it can be seen
that \(\text{Ann}(\text{Ann}(\bar{a})) = P/P^2 \). Therefore \(\bar{a} = P/P^2 \). So \(Ra + P^2 = P \) and by the Nakayama lemma, \(P_P = (a)_P \). Thus, by Lemma 2.8, \(P \) is invertible, and this means that \(R \) is a Dedekind domain.

For the “only if” part, let \(I \) be a proper ideal of a Dedekind domain \(R \). Then \(I = P_1^{t_1}P_2^{t_2} \cdots P_n^{t_n} \) for some prime ideals \(P_1, P_2, \ldots, P_n \) and some integers \(t_1, t_2, \ldots, t_n \). By the Chinese remainder theorem, \(R/I \cong R/P_1^{t_1} \oplus R/P_2^{t_2} \oplus \cdots \oplus R/P_n^{t_n} \). In order to show that \(R/I \) is 2-SG-semisimple, we only need to prove that \(R/P_i^{t_i} \) is such a ring. When \(t_i = 1 \), the field \(R/P_i \) is certainly 2-SG-semisimple. Therefore, we can assume that \(t_i > 1 \). Since \(R/P_i^{t_i} \) is an Artinian local ring, by Lemma 2.2 and Theorem 2.6, it suffices to prove that the maximal ideal \(P_i/P_i^{t_i} \) is principal. By [16, Corollary 9.8.7], we can choose an element \(b \in P_i^{t_i} \) and an element \(c \in P_i \) such that \(P_i = (b, c) \). Therefore, \(P_i/P_i^{t_i} = (c + P_i^{t_i}) \) is principal. \(\Box \)

Acknowledgments. The authors would like to thank the referee for careful reading and helpful comments.

REFERENCES

Department of Mathematics, Faculty of Sciences, B.P. 1014, Mohammed V University, Rabat, Morocco

Email address: d.bennis@fsr.ac.ma, driss_bennis@hotmail.com

College of Science, Southwest University of Science and Technology, Mianyang, 621010, P.R. China

Email address: hukui200418@163.com

College of Mathematics and Software Science, Sichuan Normal University, Chengdu, 610068, P.R. China

Email address: wangfg2004@163.com