PRIME DIVISORS OF IRREDUCIBLE CHARACTER DEGREES

HUNG P. TONG-VIET

ABSTRACT. Let G be a finite group. We denote by $\rho(G)$ the set of primes which divide some character degrees of G and by $\sigma(G)$ the largest number of distinct primes which divide a single character degree of G. We show that $|\rho(G)| \leq 2\sigma(G) + 1$ when G is an almost simple group. For arbitrary finite groups G, we show that $|\rho(G)| \leq 2\sigma(G) + 1$ provided that $\sigma(G) \leq 2$.

1. Introduction. Throughout this paper, all groups are finite, and all characters are complex characters. The set of all complex irreducible characters of G is denoted by Irr(G), and we let cd(G) be the set of all complex irreducible character degrees of G. We define $\rho(G)$ to be the set of primes which divide some character degree of G. For $\chi \in$ Irr(G), let $\pi(\chi)$ be the set of all prime divisors of $\chi(1)$, and let $\sigma(\chi) = |\pi(\chi)|$. Moreover, $\sigma(G)$ is defined to be the maximum value of $\sigma(\chi)$ when χ runs over the set Irr(G). Huppert’s $\rho - \sigma$ conjecture proposed by Huppert in [7] states that if G is a solvable group, then $|\rho(G)| \leq 2\sigma(G)$; and, if G is an arbitrary group, then $|\rho(G)| \leq 3\sigma(G)$. For solvable groups, this conjecture has been verified by Manz [11] and Gluck [6] when $\sigma(G) = 1$ and 2, respectively. In general, it is proved by Manz and Wolf [13] that $|\rho(G)| \leq 3\sigma(G) + 2$. For arbitrary groups, Manz [12] showed that $|\rho(G)| = 3$ if G is nonsolvable and $\sigma(G) = 1$. Recently, it has been proved by Casolo and Dolfi [3] that $|\rho(G)| \leq 7\sigma(G)$ for any arbitrary groups G. In [13], Manz and Wolf proposed that, for any group G,

$$|\rho(G)| \leq 2\sigma(G) + 1.$$

We call this new conjecture the strengthened Huppert’s $\rho - \sigma$ conjecture. Obviously, this new conjecture is stronger than the original one. In

Keywords and phrases. Character degrees, Huppert’s $\rho - \sigma$ conjecture.

Received by the editors on March 11, 2013, and in revised form on August 19, 2013.

DOI:10.1216/RMJ-2015-45-5-1645 Copyright ©2015 Rocky Mountain Mathematics Consortium
this paper, we first improve the result due to Alvis and Barry in [1] by proving the following.

Theorem A. Let G be an almost simple group. Then $|\rho(G)| \leq 2\sigma(G)$ unless $G \cong \text{PSL}_2(2^f)$ with $f \geq 2$ and $|\pi(2^f - 1)| = |\pi(2^f + 1)|$. For the exceptions, we have $|\rho(G)| = 2\sigma(G) + 1$.

This verifies the strengthened Huppert’s $\rho - \sigma$ conjecture for almost simple groups. In the next theorem, we verify this new conjecture for groups G with $\sigma(G) \leq 2$.

Theorem B. Let G be a finite group. If $\sigma(G) \leq 2$, then $|\rho(G)| \leq 2\sigma(G) + 1$.

Notice that Theorem B is also a generalization to [19, Theorem A].

Notation. For a positive integer n, we denote the set of all prime divisors of n by $\pi(n)$. If G is a group, then we write $\pi(G)$ instead of $\pi(|G|)$ for the set of all prime divisors of the order of G. If $N \trianglelefteq G$ and $\theta \in \text{Irr}(N)$, then the inertia group of θ in G is denoted by $I_G(\theta)$. We write $\text{Irr}(G|\theta)$ for the set of all irreducible constituents of θ^G. Moreover, if $\chi \in \text{Irr}(G)$, then $\text{Irr}(\chi|N)$ is the set of all irreducible constituents of χ when restricted to N. Recall that a group G is said to be an almost simple group with socle S if there exists a nonabelian simple group S such that $S \trianglelefteq G \leq \text{Aut}(S)$. The greatest common divisor of two integers a and b is $\text{gcd}(a,b)$. Denote by $\Phi_k := \Phi_k(q)$ the value of the kth cyclotomic polynomial evaluated at q. Other notation is standard.

2. **Proof of Theorem A.** If G is an almost simple group, then G has no normal abelian Sylow subgroup and so, by Ito-Michler’s theorem [14, Theorem 5.4], $\rho(G) = \pi(G)$. This fact will be used without any further reference.

Lemma 2.1. Let S be a sporadic simple group, the Tits group or an alternating group of degree at least 7. If G is an almost simple group with socle S, then

$$|\pi(G)| = |\pi(S)| \leq 2\sigma(G).$$
Proof. Observe first that, if S is one of the simple groups in the lemma, and G is any almost simple group with socle S, then $\pi(G) = \pi(S)$. Since $S \leq G$, we see that $\sigma(S) \leq \sigma(G)$. Thus, it suffices to show that $|\pi(S)| \leq 2\sigma(S)$. By using [4], we can easily check that $|\pi(S)| \leq 2\sigma(S)$ when S is a sporadic simple group, the Tits group or an alternating group of degree n with $7 \leq n \leq 14$. Finally, if $S \cong A_n$ with $n \geq 15$, then the result in [2] yields that $|\pi(S)| = \sigma(S)$. This completes the proof. □

For $\epsilon = \pm$, we use the convention that $\text{PSL}_n^\epsilon(q)$ is $\text{PSL}_n(q)$ if $\epsilon = +$ and $\text{PSU}_n(q)$ if $\epsilon = -$. Let $q \geq 2$ and $n \geq 3$ be integers with $(n, q) \neq (6, 2)$. A prime ℓ is called a primitive prime divisor of $q^n - 1$ if $\ell \mid q^n - 1$ but $\ell \nmid q^m - 1$ for any $m < n$. By Zsigmondy’s theorem [21], the primitive prime divisors of $q^n - 1$ always exist. We denote by $\ell_n(q)$ the smallest primitive prime divisor of $q^n - 1$. In Table 1, which is taken from [10], we give the orders of two maximal tori T_i and the corresponding two primitive prime divisors ℓ_i, for $i = 1, 2$, of classical groups.

Let C be the set consisting of the following simple groups:

\begin{align*}
\text{PSL}_2(q), & \quad \text{PSL}_3(q), \quad \text{PSU}_3(q), \quad \text{PSp}_4(q) \quad \text{PSL}_4(2), \\
\text{PSL}_6(2), & \quad \text{PSL}_7(2), \quad \text{PSU}_4(2), \quad \text{PSU}_4(3), \quad \text{PSU}_6(2), \\
\text{Sp}_4(2)' , & \quad \text{Sp}_6(2), \quad \text{Sp}_8(2), \quad \Omega_7(3), \quad \Omega_8^+(2), \\
\Omega_8^-(2), & \quad 3\text{D}_4(2), \quad G_2(2)', \quad G_2(3), \quad G_2(4).
\end{align*}

Lemma 2.2. Let S be a finite simple group of Lie type in characteristic p which is not the Tits groups nor $\text{PSL}_2(2^f)$ with $f \geq 2$. Then $|\pi(S)| \leq 2\sigma(S)$.

Proof. We consider the following cases.

Case 1. $S \cong \text{PSL}_2(q)$, where $q = p^f \geq 5$ is odd.

Since $\text{PSL}_2(5) \cong \text{PSL}_2(4)$, we can assume that $q > 5$. In this case, all character degrees of S divide $q, q - 1$ or $q + 1$. Observe that

$\pi(S) = \{p\} \cup \pi(q - 1) \cup \pi(q + 1), \{p\} \cap \pi(q \pm 1) = \emptyset$

and

$\pi(q - 1) \cap \pi(q + 1) = \{2\}$.

Table 1. Two tori for classical groups.

| $G = G(q)$ | $|T_1|$ | $|T_2|$ | ℓ_1 | ℓ_2 |
|---|---|---|---|---|
| A_n | $(q^{n+1}-1)/ (q-1)$ | q^n-1 | $\ell_{n+1}(q)$ | $\ell_n(q)$ |
| 2A_n, $n \equiv 0(4)$ | $(q^{n+1}+1)/(q+1)$ | q^n-1 | $\ell_{2n+2}(q)$ | $\ell_n(q)$ |
| 2A_n, $n \equiv 1(4)$ | $(q^{n+1}-1)/(q+1)$ | q^n+1 | $\ell_{(n+1)/2}(q)$ | $\ell_{2n}(q)$ |
| 2A_n, $n \equiv 2(4)$ | $(q^{n+1}+1)/(q+1)$ | q^n-1 | $\ell_{2n+2}(q)$ | $\ell_{n/2}(q)$ |
| 2A_n, $n \equiv 3(4)$ | $(q^{n+1}-1)/(q+1)$ | q^n+1 | $\ell_{n+1}(q)$ | $\ell_{2n}(q)$ |
| B_n, C_n, $n \geq 3$ odd | q^n+1 | q^n-1 | $\ell_{2n}(q)$ | $\ell_n(q)$ |
| B_n, C_n, $n \geq 2$ even | q^n+1 | $(q^{n-1}+1)(q+1)$ | $\ell_{2n}(q)$ | $\ell_{2n-2}(q)$ |
| D_n, $n \geq 5$ odd | $(q^{n-1}+1)(q+1)$ | q^n-1 | $\ell_{2n-2}(q)$ | $\ell_n(q)$ |
| D_n, $n \geq 4$ even | $(q^{n-1}+1)(q+1)$ | $(q^{n-1}-1)(q-1)$ | $\ell_{2n-2}(q)$ | $\ell_{n-1}(q)$ |
| 2D_n | q^n+1 | $(q^{n-1}+1)(q-1)$ | $\ell_{2n}(q)$ | $\ell_{2n-2}(q)$ |

Hence, we obtain that

$$|\pi(S)| = 1 + \sigma(q+1) + \sigma(q-1) - |\pi(q-1) \cap \pi(q+1)|$$

$$= \sigma(q+1) + \sigma(q-1) \leq 2\sigma(S).$$

Case 2. $S \cong \text{PSL}^\epsilon_3(q)$ with $q = p^f$ and $\epsilon = \pm$. As $\text{PSL}_3(2) \cong \text{PSL}_2(7)$ and $\text{PSU}_3(2)$ are not simple, we can assume that $q > 2$. The cases when $q = 3$ or 4 can be checked directly using [4]. So, we can assume that $q \geq 5$. By [17], S possesses irreducible characters χ_i, $i = 1, 2$, with degree

$$\chi_1(1) = (q-\epsilon 1)^2(q+\epsilon 1) \quad \text{and} \quad \chi_2(1) = q(q^2 + \epsilon q + 1).$$
Let $d = \gcd(3, q - \epsilon 1)$. Then

$$|S| = \frac{1}{d}q^3(q^2 - 1)(q^3 - \epsilon 1) = \frac{1}{d}q^3(q - \epsilon 1)^2(q + \epsilon 1)(q^2 + \epsilon q + 1),$$

and so

$$\pi(S) = \pi(\chi_1) \cup \pi(\chi_2).$$

Therefore, $|\pi(S)| \leq 2\sigma(S)$ as wanted.

Case 3. $S \cong \text{PSp}_4(q)$ with $q = p^f > 2$.

By [5, 18], S has two irreducible characters χ_i, $i = 1, 2$, with degrees $\Phi_1^2 \Phi_2^2$ and $q \Phi_1 \Phi_4$, respectively. Since

$$|S| = \frac{1}{d}q^4 \Phi_1^2 \Phi_2^2 \Phi_4$$

where $d = \gcd(2, q - 1)$, we deduce that

$$\pi(S) = \pi(\chi_1) \cup \pi(\chi_2),$$

and thus $|\pi(S)| \leq 2\sigma(S)$.

Case 4. S is one of the remaining simple groups in the list C.

Using [4], it is routine to check that $|\pi(S)| \leq 2\sigma(S)$ in all these cases.

Case 5. S is not in the list C.

We consider the following setup. Let G be a simple, simply connected algebraic group defined over a field of size q in characteristic p, and let F be a Frobenius map on G such that $S \cong L/Z$, where $L := GF$ and $Z := Z(L)$. Let the pair (G^*, F^*) be dual to (G, F) and let $L^* := G^*F^*$. By Lusztig’s theory, the irreducible characters of GF are partitioned into rational series $E(G^*, (s))$ which are indexed by (G^*F^*)-conjugacy classes (s) of semisimple elements $s \in G^*F^*$. Furthermore, if $\gcd(|s|, |Z|) = 1$, then every $\chi \in E(G^*, (s_i))$ is trivial at Z, and thus $\chi \in \text{Irr}(S) = \text{Irr}(L/Z)$. (See [15, page 349]). Notice also that $\chi(1)$ is divisible by $|L^* : C_{L^*}(s)|_{p'}$.

For simple classical groups of Lie type, the restriction on S guarantees that both primitive prime divisors ℓ_i in Table 1 exist. Let $s_i \in G^*F^*$ with $|s_i| = \ell_i$, $i = 1, 2$. Then $C_{L^*}(s_i) = T_i$ for $i = 1, 2,$
where T_i are maximal tori of L^*. Similarly, for each simple exceptional group of Lie type S, by \cite[Lemma 2.3]{15}, one can find two semisimple elements $s_i \in G_{F^r}$ with $|s_i| = \ell_i$, $i = 1, 2$. In both cases, we have that $(\ell_i, |Z|) = 1$ for $i = 1, 2$ and, if $a := \gcd(|C_{L^*}(s_1)|, |C_{L^*}(s_2)|)$, then either $a = 1$ or, if a prime r divides a, then r also divides $|L^* : C_{L^*}(s_i)|_{p'}$ for some i. Let $\chi_i \in \mathcal{E}(G, (s_i))$, $i = 1, 2$, be such that $\chi_i(1) = |L^* : C_{L^*}(s_i)|_{r'}$. Then $\chi_i \in \text{Irr}(S)$ for $i = 1, 2$ and

$$\pi(S) = \{p\} \cup \pi(\chi_1) \cup \pi(\chi_2).$$

Notice that p is relatively prime to both $\chi_i(1)$ for $i = 1, 2$. So,

$$|\pi(S)| = |\{p\} \cup \pi(\chi_1) \cup \pi(\chi_2)|$$

$$= 1 + |\pi(\chi_1)| + |\pi(\chi_2)| - |\pi(\chi_1) \cap \pi(\chi_2)|$$

$$= \sigma(\chi_1) + \sigma(\chi_2) - (|\pi(\chi_1) \cap \pi(\chi_2)| - 1)$$

$$\leq 2\sigma(S) - (|\pi(\chi_1) \cap \pi(\chi_2)| - 1).$$

If we can show that $|\pi(\chi_1) \cap \pi(\chi_2)| \geq 1$, then clearly $|\pi(S)| \leq 2\sigma(S)$, and we are done. By way of contradiction, assume that $\pi(\chi_1) \cap \pi(\chi_2)$ is empty. Then $\gcd(\chi_1(1), \chi_2(1)) = 1$, and so

$$\gcd(|L^* : C_{L^*}(s_1)|_{p'}, |L^* : C_{L^*}(s_2)|_{p'}) = 1.$$

It follows that $|L^*|_{p'}$ must divide $|C_{L^*}(s_1)|_{p'} \cdot |C_{L^*}(s_2)|_{p'}$. However, we can check by using \cite[Lemma 2.3]{15} and Table 1 that this is not the case. The proof is now complete.

We now prove Theorem A which we restate here.

Theorem 2.3. Let G be an almost simple group. Then $|\rho(G)| \leq 2\sigma(G)$ unless $G \cong \text{PSL}_2(2^f)$ with $|\pi(2^f - 1)| = |\pi(2^f + 1)|$. For the exceptions, we have $|\rho(G)| = 2\sigma(G) + 1$.

Proof. Let G be an almost simple group with simple socle S. Since $S \leq G$, we obtain that $\sigma(S) \leq \sigma(G)$.

Case 1. $S \cong \text{PSL}_2(q)$ with $q = 2^f \geq 4$.

It is well known that $|S| = q(q^2 - 1)$, $\gcd(2^f - 1, 2^f + 1) = 1$ and

$$\text{cd}(S) = \{1, q - 1, q, q + 1\}.$$
If $|\pi(q - 1)| = |\pi(q + 1)|$, then

$$\pi(S) = \{2\} \cup \pi(q - 1) \cup \pi(q + 1),$$

and thus $|\pi(S)| = 2\sigma(S) + 1$ as $\sigma(S) = |\pi(2^f \pm 1)|$. Assume that $|\pi(q - 1)| \neq |\pi(q + 1)|$. Then $|\pi(2^f + \delta)| > |\pi(2^f - \delta)|$ for some $\delta \in \{\pm 1\}$. Hence, $\sigma(S) = |\pi(2^f + \delta)|$, and thus

$$|\pi(S)| = |\{2\} \cup \pi(2^f - \delta) \cup \pi(2^f + \delta)|$$

$$= 1 + |\pi(2^f - \delta)| + |\pi(2^f + \delta)|.$$

Since $|\pi(2^f + \delta)| \geq |\pi(2^f - \delta)| + 1$, we obtain that

$$|\rho(S)| \leq 2|\pi(2^f + \delta)| \leq 2\sigma(S).$$

Thus, the result holds when $G = S$.

Assume now that $|G : S|$ is nontrivial. We know that $\text{Aut}(S) = S \cdot \langle \varphi \rangle$, where φ is a field automorphism of S of order f. Thus, $G = S \cdot \langle \psi \rangle$, with $\psi \in \langle \varphi \rangle$. If $f = 2$, then $G \cong A_5 \cdot 2$, and obviously $|\pi(G)| \leq 2\sigma(G)$. Hence, we can assume that $f > 2$. Clearly, if $f \equiv 2 \pmod{4}$ and $G = S \cdot \langle \varphi \rangle$, then $|G : S| > 2$. So by [20, Theorem A], G has two irreducible characters $\chi_i \in \text{Irr}(G)$, $i = 1, 2$, with $\chi_1(1) = |G : S|(q - 1)$ and $\chi_2(1) = |G : S|(q + 1)$. Obviously,

$$\pi(G) = \{2\} \cup \pi(\chi_1) \cup \pi(\chi_2)$$

and

$$\pi(\chi_1) \cap \pi(\chi_2) = \pi(|G : S|) \neq \emptyset.$$

If $|G : S|$ is even, then

$$|\rho(G)| = |\pi(\chi_1) \cup \pi(\chi_2)| \leq |\pi(\chi_1)| + |\pi(\chi_2)| \leq 2\sigma(G).$$

If $|G : S|$ is odd, then

$$|\rho(G)| = |\{2\} \cup \pi(\chi_1) \cup \pi(\chi_2)|$$

$$= 1 + |\pi(\chi_1)| + |\pi(\chi_2)| - |\pi(\chi_1) \cap \pi(\chi_2)|$$

$$= \sigma(\chi_1) + \sigma(\chi_2) - (|\pi(|G : S|)| - 1)$$

$$\leq \sigma(\chi_1) + \sigma(\chi_2)$$

$$\leq 2\sigma(G).$$
Case 2. S is a sporadic simple group, the Tits group or an alternating group of degree at least 7.

By Lemma 2.1, we obtain that $|\rho(G)| \leq 2\sigma(G)$.

Case 3. S is a finite simple group of Lie type in characteristic p and S is not the Tits group nor $\text{PSL}_2(2^f)$ with $f \geq 2$.

Subcase 3a. $\pi(G) = \pi(S)$.

By Lemma 2.2, we have that $|\pi(S)| \leq 2\sigma(S)$. Thus,

$$|\rho(G)| = |\pi(S)| \leq 2\sigma(S) \leq 2\sigma(G).$$

Subcase 3b. $\pi := \pi(G) - \pi(S)$ is nonempty.

Let A be the subgroup of the group of coprime outer automorphisms of S induced by the action of G on S. By [15, Lemma 2.10], A is cyclic and central in $\text{Out}(S)$. Moreover, A is generated by a fixed field automorphism $\gamma \in \text{Out}(S)$. It follows that the group $S \cdot A$ is normal in G and $\pi(S \cdot A) = \pi(G)$. Thus we can assume that $G = S \cdot A$ with $A = \langle \gamma \rangle$ and γ a field automorphism of S. Furthermore, $\pi(\gamma) = \pi$.

Replacing A by a normal subgroup if necessary, we can also assume that $|A| = |\gamma|$ is the product of all distinct primes in π.

As in the proof of Lemma 2.2, let \mathcal{G} be a simple, simply connected algebraic group defined over a field of size $q = p^f$ in characteristic p, and let F be a Frobenius map of \mathcal{G} such that $S \cong L/Z$, where $L := \mathcal{G}^F$ and $Z := Z(L)$. Let the pair (\mathcal{G}^*, F^*) be dual to (\mathcal{G}, F), and let $L^* := \mathcal{G}^{*F^*}$. As $\pi \subseteq \pi(f)$, where $\pi = \pi(G) - \pi(S)$, it is easy to check that both the primitive prime divisors in [15, Lemmas 2.3 and 2.4] exist, and thus one can find two semisimple elements $s_i \in \mathcal{G}^{*F^*}$ with $|s_i| = \ell^i$ such that $(\ell^i, |Z|) = 1$ for $i = 1, 2$. Arguing as in the proof of Lemma 2.2, we obtain that

$$\pi(S) = \{p\} \cup \pi(\chi_1) \cup \pi(\chi_2),$$

where $\chi_i \in \mathcal{G}^{\mathcal{G}^F, (s_i)}$ such that $\chi_i(1) = |L^*: C_{L^*}(s_i)|_p$ and χ_i can be considered as characters of S for $i = 1, 2$.

We next claim that the inertia group for both χ_i, $i = 1, 2$, in G is exactly S. It suffices to show that no field automorphism of S of
prime order can fix χ_i for $i = 1, 2$. Let τ be a field automorphism of S of prime order s. We can extend τ to an automorphism of G^F and G^{*F^*}, which we also denote by τ. Notice that $C_{G^{*F^*}}(\tau)$ is a finite group of Lie type of the same type as that of G^{*F^*} but defined over a field of size $q^{1/s}$. Now it is straightforward to check that both ℓ_i, $i = 1, 2$, are relatively prime to $|C_{G^{*F^*}}(\tau)|$. Hence, G^{*F^*}-conjugacy classes (s_i) of s_i in G^{*F^*} are not τ-invariant for $i = 1, 2$ (see [15, Proposition 2.6]). Then $\tau(s_i)$ and s_i are not G^{*F^*}-conjugate for $i = 1, 2$, and thus $\chi_i \in \mathcal{E}(G^F, (s_i))$, $i = 1, 2$, are not τ-invariant (see [15, Theorem 2.7]). Therefore, we obtain that $\chi_i^G \in \text{Irr}(G)$ for $i = 1, 2$; hence, $\chi_i^G(1) \in \text{cd}(G)$. Since

$$\pi(S) = \{p\} \cup \pi(\chi_1) \cup \pi(\chi_2)$$

and $\pi(G) = \pi(S) \cup \pi([G : S])$, we obtain that

$$\pi(G) = \{p\} \cup \pi([G : S]|\chi_1(1)) \cup \pi([G : S]|\chi_2(1)) = \{p\} \cup \pi(\chi_1^G) \cup \pi(\chi_2^G).$$

Moreover, $p \not| [G : S]|\chi_i(1) = \chi_i^G(1)$ for $i = 1, 2$, and

$$|\pi(\chi_1^G) \cap \pi(\chi_2^G)| \geq 1.$$

Therefore,

$$|\pi(G)| = 1 + \sigma(\chi_1^G) + \sigma(\chi_2^G) - |\pi(\chi_1^G) \cap \pi(\chi_2^G)|$$

$$\leq 2\sigma(G) - (|\pi(\chi_1^G) \cap \pi(\chi_2^G)| - 1)$$

$$\leq 2\sigma(G).$$

The proof is now complete. \qed

The next results will be needed in the proof of Theorem B.

Lemma 2.4. Let S be a nonabelian simple group. If $\sigma(S) \leq 2$, then S is one of the following groups.

(i) $S \cong \text{PSL}_2(2^f)$ with $|\pi(2^f \pm 1)| \leq 2$, and so $|\pi(S)| \leq 5$.

(ii) $S \cong \text{PSL}_2(q)$ with $q > 5$ odd and $|\pi(q \pm 1)| \leq 2$ and so $|\pi(S)| \leq 4$.

(iii) $S \in \{M_{11}, A_7, 3B_2(8), 2B_2(32), \text{PSL}_3^+(3), \text{PSL}_3^+(4), \text{PSL}_3(8)\}$ and $|\pi(S)| = 4$.

Proof. As S is a nonabelian simple group, we have that $|\pi(S)| \geq 3$. If $S \cong \text{PSL}_2(q)$ with $q \geq 4$, then the lemma follows easily as the character degree set of S is known. Now assume that $S \not\cong \text{PSL}_2(q)$. Then Lemmas 2.2 and 2.1 imply that $|\pi(S)| \leq 2\sigma(S)$. So, $3 \leq |\pi(S)| \leq 4$. By checking the list of nonabelian simple groups with at most four prime divisors in [8], we deduce that only those nonabelian simple groups appearing in (iii) above satisfy the hypotheses of the lemma. \qed

Lemma 2.5. Let G be an almost simple group with simple socle S. If $\sigma(G) \leq 2$, then $\pi(G) = \pi(S)$, where S is one of the simple groups in Lemma 2.4.

Proof. Since $\sigma(S) \leq \sigma(G) \leq 2$, we deduce that S is isomorphic to one of the simple groups in the conclusion of Lemma 2.4. If $|\pi(S)| = 3$, then S is one of the simple groups in [8, Table 1], and we can check that $\pi(G) = \pi(S)$ in these cases. Thus, we assume that $|\pi(S)| \geq 4$. Now, if $G = S$, then we have nothing to prove. So, we assume that $G \neq S$. In particular, $G \not\cong \text{PSL}_2(2^f)$ with $f \geq 2$. Then $|\pi(G)| \leq 2\sigma(G) \leq 4$ by Theorem A, and thus $4 \leq |\pi(S)| \leq |\pi(G)| \leq 4$, which forces $|\pi(S)| = |\pi(G)|$ and, hence, $\pi(G) = \pi(S)$ as wanted. \qed

3. **Proof of Theorem B.** The following two lemmas are obvious.

Lemma 3.1. Let A and B be groups such that $|\rho(A)| \geq 3$ and $|\rho(B)| \geq 3$. If

$$\sigma(A \times B) \leq 2,$$

then $\sigma(A) = 1 = \sigma(B)$.

Lemma 3.2. Let N be a normal subgroup of a group G. If $\rho(G/N) = \pi(G/N)$, then

$$\rho(G) - \rho(G/N) \subseteq \rho(N).$$

Recall that the solvable radical of a group G is the largest normal solvable subgroup of G.

Lemma 3.3. Let G be a nonsolvable group, and let N be the solvable radical of G. Suppose that $\sigma(G) \leq 2$ and $|\rho(G)| \geq 5$. Then G/N is an almost simple group.
Proof. We first claim that, if M/N is a chief factor of G, then M/N is a nonabelian simple group.

Let M be a normal subgroup of G such that M/N is a chief factor of G. Since N is the largest normal solvable subgroup of G, we deduce that M/N is nonsolvable so that $M/N \cong S^k$ for some integer $k \geq 1$ and some nonabelian simple group S. Let $C/N = C_{G/N}(M/N)$. Then G/C embeds into $\text{Aut}(S^k)$.

Assume first that $k \geq 3$. Since $|\rho(S)| = |\pi(S)| \geq 3$, there exist three distinct prime divisors r_i, $1 \leq i \leq 3$, and three characters $\psi_i \in \text{Irr}(S)$ for $1 \leq i \leq 3$ with $r_i | \psi_i(1)$. Let

$$\varphi = \psi_1 \times \psi_2 \times \psi_3 \times 1 \times \cdots \times 1 \in \text{Irr}(S^k).$$

Then $\sigma(\varphi) \geq 3$, which is a contradiction since

$$\sigma(S^k) = \sigma(M/N) \leq \sigma(M) \leq \sigma(G) \leq 2.$$

Thus $k \leq 2$.

Now assume that $k = 2$. Let $B/C = (G/C) \cap \text{Aut}(S)^2$. Then G/B is a nontrivial subgroup of the symmetric group of degree 2, and thus $|G:B| = 2$. Since $S^2 \cong MC/C \leq B/C \leq G/C$ and $\sigma(G) \leq 2$, we deduce that $\sigma(S^2) \leq 2$, and thus $\sigma(S) = 1$, by Lemma 3.1. By [12, Satz 8], we know that S is isomorphic to either $\text{PSL}_2(4)$ or $\text{PSL}_2(8)$. In both cases, we obtain that $\pi(\text{Aut}(S)) = \pi(S)$; hence, $\pi(B/C) = \pi(S)$. Moreover, as $|G:B| = 2$, we deduce that $\pi(G/C) = \pi(S)$. As G/C has no nontrivial normal abelian Sylow subgroups, Ito-Michler’s theorem yields that $\rho(G/C) = \pi(G/C) = \pi(S)$. Since $|\pi(G/C)| = |\pi(S)| = 3$ and $|\rho(G)| \geq 5$, there exists $r \in \rho(G) - \pi(G/C)$. Then $r > 2$ and $r \in \rho(C)$ by Lemma 3.2. Let $\theta \in \text{Irr}(C)$ be such that $r | \theta(1)$. Let L be a normal subgroup of MC such that $L/C \cong S$. Notice that $MC/C \cong S^2$. By applying [19, Lemma 4.2], θ extends to $\theta_0 \in \text{Irr}(L)$. By Gallagher’s theorem [9, Corollary 6.17], $\theta_0 \mu \in \text{Irr}(L)$ for all $\mu \in \text{Irr}(L/C)$. Let $\mu_0 \in \text{Irr}(L/C)$ with $2 | \mu_0(1)$, and let $\varphi = \theta_0 \mu_0 \in \text{Irr}(L)$. Then $\pi(\varphi(1)) = \{2, r\}$ with $r > 2$. As $MC/L \cong S$, we can apply [19, Lemma 4.2] again to obtain that φ extends to $\varphi_0 \in \text{Irr}(MC)$ and then, by applying Gallagher’s theorem, $\varphi_0 \mu \in \text{Irr}(MC)$ for all $\mu \in \text{Irr}(MC/L)$. Clearly, $MC/L \cong S$ has an irreducible character $\tau \in \text{Irr}(MC/L)$ with $s | \tau(1)$, where $s \notin \{2, r\}$. We now have that $\varphi_0 \tau \in \text{Irr}(MC)$. But then this is a contradiction.
as \(\pi(\varphi_0(1)\tau(1)) = \{2, s, r\} \). This contradiction shows that \(k = 1 \), as wanted.

Let \(M/N \) be a chief factor of \(G \), and let \(C/N = C_{G/N}(M/N) \). We claim that \(C = N \) and thus \(G/N \) is an almost simple group as required. By the claim above, we know that \(M/N \cong S \) for some nonabelian simple group \(S \). Hence, \(G/C \) is an almost simple group with socle \(MC/C \cong M/N \). Suppose, by contradiction, that \(C \neq N \). Now let \(L/N \) be a chief factor of \(G \) with \(N \leq L \leq C \). By the claim above, we deduce that \(L/N \) is isomorphic to some nonabelian simple group. In particular, \(|\rho(C/N)| \geq |\pi(L/N)| \geq 3 \). We have that \(MC/N \cong C/N \times M/N \). Since \(\sigma(MC/N) \leq \sigma(MC) \leq \sigma(G) \leq 2 \), we deduce that \(\sigma(C/N \times M/N) \leq 2 \) and thus by Lemma 3.1, \(\sigma(C/N) = 1 = \sigma(M/N) \). By [12], we have \(C/N \cong T \times A \), where \(A \) is abelian, \(T \) is a nonabelian simple group and \(S, T \in \{ \text{PSL}_2(4), \text{PSL}_2(8) \} \). Since \(C \leq G \) and the solvable radical \(W \) of \(C \) is characteristic in \(C \), we obtain that \(W \leq G \), and thus \(W \leq N \) as \(N \) is the largest normal solvable subgroup of \(G \). Clearly, \(N \leq W \) as \(N \) is also a solvable normal subgroup of \(C \), so \(W = N \). Therefore, \(C/N \) has no nontrivial normal abelian subgroup. Thus, \(A = 1 \), and hence \(C/N \cong T \). Since \(\pi(G/C) = \pi(M/N) \) and \(G/N \) has no normal abelian Sylow subgroup, we obtain that

\[
\rho(G/N) = \pi(G/N) = \pi(C/N) \cup \pi(M/N) = \pi(S) \cup \pi(T).
\]

It follows that

\[
|\rho(G/N)| = |\pi(S) \cup \pi(T)| \leq |\pi(\text{PSL}_2(4)) \cup \pi(\text{PSL}_2(8))| = 4.
\]

Hence, \(\rho(G) - \rho(G/N) \) is nonempty. Now let \(r \in \rho(G) - \rho(G/N) \). As \(\{2, 3\} \subseteq \rho(G/N) \), we obtain that \(r \notin \{2, 3\} \). By Lemma 3.2, \(r \in \rho(N) \), and hence \(r \mid \theta(1) \) for some \(\theta \in \text{Irr}(N) \). Since \(\sigma(M) \leq \sigma(G) \leq 2 \) and \(M/N \cong S \), by [19, Lemma 4.2], we deduce that \(\theta \) extends to \(\theta_0 \in \text{Irr}(M) \). Now let \(\lambda \in \text{Irr}(M/N) \) with \(2 \mid \lambda(1) \). By Gallagher’s theorem, \(\varphi = \theta_0\lambda \in \text{Irr}(M) \) with \(\pi(\varphi(1)) = \{2, r\} \). Notice that \(r \geq 5 \) since \(r \notin \{2, 3\} \). Now let \(K = MC \leq G \). Then \(K/M \cong T \) and \(\sigma(K) \leq 2 \). Applying the same argument as above, we deduce that \(\varphi \) extends to \(\varphi_0 \in \text{Irr}(K) \). Clearly, \(K/M \cong T \) has an irreducible character \(\mu \) with \(3 \mid \mu(1) \) and thus, by Gallagher’s theorem again, \(\psi = \varphi_0\mu \in \text{Irr}(K) \) and obviously \(\sigma(\psi) \geq 3 \), which is a contradiction. \(\square \)

We are now ready to prove Theorem B, which we state here.
Theorem 3.4. Let G be a group. If $\sigma(G) \leq 2$, then $|\rho(G)| \leq 2\sigma(G)+1$.

Proof. Let G be a counterexample to the theorem with minimal order. Then $\sigma(G) \leq 2$, but $|\rho(G)| > 2\sigma(G) + 1$. If G is solvable or G is nonsolvable with $\sigma(G) = 1$, then

$$|\rho(G)| \leq 2\sigma(G) + 1$$

by [6, 11, 12], which is a contradiction. Thus, we can assume that G is nonsolvable, $\sigma(G) = 2$ and $|\rho(G)| \geq 6$. Let N be the solvable radical of G. By Lemma 3.3, G/N is an almost simple group with simple socle M/N. Since $\sigma(M/N) \leq \sigma(G/N) \leq \sigma(G) = 2$, we deduce from Lemmas 2.5 and 2.4 that

$$|\pi(G/N)| = |\pi(M/N)| \leq 5.$$

As $|\rho(G)| \geq 6$, we have that $\rho(G) - \rho(G/N)$ is nonempty and let $r \in \rho(G) - \rho(G/N)$. By Lemma 3.2, $r | \theta(1)$ for some $\theta \in \text{Irr}(N)$. Since $\sigma(M) \leq 2$, by applying [19, Lemma 4.2], we deduce that θ extends to $\theta_0 \in \text{Irr}(M)$. Using Gallagher’s theorem, we must have that $\sigma(M/N) = 1$, and hence $M/N \cong \text{PSL}_2(4)$ or $\text{PSL}_2(8)$. Thus, $|\pi(G/N)| = |\pi(M/N)| = 3$; hence, $|\tau| \geq 3$ with $\tau = \rho(G) - \rho(G/N)$. By Lemma 3.2, we have that $\tau \subseteq \rho(N)$ and, since N is solvable, by applying Pálfy’s condition [16, Theorem], there exists $\psi \in \text{Irr}(N)$ such that $\psi(1)$ is divisible by two distinct primes in τ. Now, by applying [19, Lemma 4.2] again, we obtain a contradiction. This contradiction shows that $|\rho(G)| \leq 2\sigma(G) + 1$, as wanted.

Acknowledgments. The author is grateful to the referee for a careful reading of the manuscript and for his or her corrections and suggestions.

REFERENCES

Department of Mathematical Sciences, Kent State University, Kent, OH 44242

Email address: htongvie@kent.edu