ABSTRACT. Recently, Merca [4] found the recurrence relation for computing the partition function $p(n)$ which requires only the values of $p(k)$ for $k \leq n/2$. In this article, we find the recurrence relation to compute the bipartition function $p_{-2}(n)$ which requires only the values of $p_{-2}(k)$ for $k \leq n/2$. In addition, we also find recurrences for $p(n)$ and $q(n)$ (number of partitions of n into distinct parts), relations connecting $p(n)$ and $q_o(n)$ (number of partitions of n into distinct odd parts).

1. Introduction. A partition of a positive integer n is a non-increasing sequence of positive integers whose sum is n. Let $p(n)$ denote the number of partitions of n, $p_{-2}(n)$ denote the number of bipartitions of n, $q(n)$ denote the number of partitions of n into distinct parts and $q_o(n)$ denote the number of partitions of n into distinct odd parts. Throughout the paper, we set

$$p(0) = p_{-2}(0) = q(0) = q_o(0) = 1$$

and

$$p(x) = p_{-2}(x) = q(x) = q_o(x) = 0 \quad \text{if } x < 0.$$

The generating functions for $p(n)$, $p_{-2}(n)$, $q(n)$ and $q_o(n)$ are

$$\sum_{n=0}^{\infty} p(n)q^n = \frac{1}{(q; q)_{\infty}}, \tag{1.1}$$

$$\sum_{n=0}^{\infty} p_{-2}(n)q^n = \frac{1}{(q; q)_2^{\infty}}, \tag{1.2}$$
\(1.3\) \[\sum_{n=0}^{\infty} q(n)q^n = \frac{1}{(q; q^2)_{\infty}} = (-q; q)_{\infty},\]

and

\(1.4\) \[\sum_{n=0}^{\infty} q_o(n)q^n = (-q; q^2)_{\infty},\]

where \(|q| < 1\) and \((a; q)_{\infty} = (1-a)(1-aq)(1-aq^2)\cdots\) is the \(q\)-shifted factorial.

Euler [2] invented generating function (1.1) which gives rise to a recurrence relation for \(p(n)\),

\(1.5\) \[\sum_{k=-\infty}^{\infty} (-1)^k p\left(n - \frac{k(3k-1)}{2}\right) = \delta_{0,n},\]

where \(\delta_{i,j}\) is the Kronecker delta. To compute partition function \(p(n)\) using (1.5) requires the values of \(p(k)\) with \(k \leq n-1\). Numerous mathematicians have given other recurrence relations for the partition function \(p(n)\). In 2004, Ewell [3] found two recurrence relations for \(p(n)\):

\(1.6\) \[p(n) = \sum_{k=0}^{\infty} p\left(\frac{n - k(k + 1)/2}{4}\right) + 2 \sum_{k=1}^{\infty} (-1)^{k-1} p(n - 2k^2)\]

and

\(1.7\) \[p(n) = \sum_{k=0}^{\infty} p\left(\frac{n - k(k + 1)/2}{2}\right)\]

\[+ \sum_{k=1}^{\infty} (-1)^{k-1} \{p(n - k(3k - 1)) + p(n - k(3k + 1))\},\]

which requires the values of \(p(k)\) with \(k \leq n - 2\) to compute \(p(n)\). Over the years, it has been a challenge for mathematicians to find the recurrence relation for \(p(n)\) that requires less number of values of \(p(k)\) with \(k < n\). In 2016, using Ramanujan’s theta function, Merca [4] found the most efficient recurrence relation

\(1.8\) \[p(n) = \sum_{k=0}^{[n/2]} \sum_{j=-\infty}^{\infty} p(k)p\left(\left\lfloor \frac{n}{2} \right\rfloor - k - j(4j - 2 + (-1)^{n})\right),\]

which requires only the values of \(p(k)\) with \(k \leq n/2\) to compute \(p(n)\).
Inspired by their relations, in this paper, we find the recurrence relation for bipartition function $p_{-2}(n)$ that requires only the values of $p_{-2}(k)$ with $k \leq n/2$. In addition, we also find recurrences for $p(n)$ and $q(n)$, the relation connecting $p(n)$ and $q_o(n)$.

Ramanujan’s theta functions and Jacobi’s identity play a key role in proving our main results. For $|q| < 1$, Ramanujan’s theta functions [1, page 36, entry 22] are defined as

$$
\psi(q) = \sum_{n=0}^{\infty} q^{n(n+1)/2} = \sum_{n=-\infty}^{\infty} q^{n(2n+1)} = \frac{(q^2; q^2)^2}{(q; q)_{\infty}}
$$

and

$$
f(-q) = (q; q)_{\infty} = \sum_{n=-\infty}^{\infty} (-1)^n q^{n(3n-1)/2}.
$$

Lemma 1.1 (Jacobi’s identity). [1, page 39, entry 24]. We have

$$
(q; q)_{\infty}^3 = \sum_{m=0}^{\infty} (-1)^m (2m + 1) q^{m(m+1)/2}.
$$

Our main result is stated in the next theorem.

Theorem 1.2. For each integer $n \geq 0$,

$$
p_{-2}(n) = \sum_{i,j=-\infty}^{\infty} \sum_{k=0}^{\lfloor n/2 \rfloor} p_{-2}(k)
$$

\[
\times p_{-2} \left(\frac{n}{2} \right) - k - j(4j - 1) - i(4i - 2 + (-1)^n) \right)
\]

+ \sum_{i,j=-\infty}^{\infty} \sum_{k=0}^{\lfloor n-1/2 \rfloor} p_{-2}(k)

\[
\times p_{-2} \left(\frac{n - 1}{2} \right) - k - j(4j - 3) - i(4i - 2 - (-1)^n) \right) .
\]
More explicitly, the above result may be written as

\[(1.13)\]
\[p_{-2}(2n) = \sum_{i,j=-\infty}^{\infty} \sum_{k=0}^{n} p_{-2}(k)p_{-2}(n-k-j(4j-1)-i(4i-1))\]
\[+ \sum_{i,j=-\infty}^{\infty} \sum_{k=0}^{n-1} p_{-2}(k)p_{-2}(n-1-k-j(4j-3)-i(4i-3))\]

and

\[(1.14)\]
\[p_{-2}(2n+1) = 2 \sum_{i,j=-\infty}^{\infty} \sum_{k=0}^{n} p_{-2}(k)p_{-2}(n-k-j(4j-3)-i(4i-1)).\]

Example 1.3. We see by Theorem 1.2 that the values of \(p_{-2}(n)\) for \(n \in \{0,1,2,3,4,5,6,7\}\) are:

\[p_0 = 1,\]
\[p_1 = 2p_0^2 = 2,\]
\[p_2 = p_0(p_0 + 2p_1) = 5,\]
\[p_3 = 2p_0(p_0 + 2p_1) = 10,\]
\[p_4 = 2p_0(p_0 + p_1 + p_2) + p_1^2 = 20,\]
\[p_5 = 4p_0(p_1 + p_2) + 2p_1^2 = 36,\]
\[p_6 = p_0(3p_0^2 + 4p_1 + 2p_2 + 2p_3) + p_1(p_1 + 2p_2) = 65,\]
\[p_7 = 2p_0(p_0 + 2p_2 + 2p_3) + 2p_1(p_1 + 2p_2) = 110,\]

where here, and throughout this example, we set \(p_{-2}(n) = p_n\). With the above values in hand, we can compute the values of \(p_{-2}(14)\) and \(p_{-2}(15)\), i.e.,

\[p_{-2}(14) = 2p_0(p_1 + 2p_2 + 3p_3 + 2p_4 + p_5 + p_6 + p_7)\]
\[+ 2p_1(p_1 + 3p_3 + 2p_4 + p_5 + p_6)\]
\[+ p_2(3p_2 + 4p_3 + 2p_4 + 2p_5) + p_3(p_3 + 2p_4) = 2665\]

and

\[p_{-2}(15) = 2p_0(p_0 + 2p_1 + 2p_2 + 2p_3 + 2p_4 + 2p_6 + 2p_7)\]
\[+ 2p_1(p_1 + 2p_2 + 2p_3 + 2p_5 + 2p_6)\]
\[+ 2p_2(p_2 + 2p_4 + 2p_5) + 2p_3(p_3 + 2p_4) = 3956.\]
2. Proof of Theorem 1.2. We write

\[
(2.1) \quad \frac{1}{(q; q)_\infty} = \frac{1}{(q; q)_\infty} = \frac{1}{(q^2; q^2)_\infty} \times \frac{(q^2; q^2)_\infty}{(q; q)_\infty}.
\]

Substituting (1.9) into (2.1), we obtain

\[
(2.2) \quad \frac{1}{(q; q)_\infty} = \frac{1}{(q^2; q^2)_\infty} \sum_{k=\infty}^{\infty} q^{k(2k+1)}.
\]

Replacing \(q\) by \(-q\) in equation (2.2), we find that

\[
(2.3) \quad \frac{1}{(-q; -q)_\infty} = \frac{1}{(q^2; q^2)_\infty} \sum_{k=\infty}^{\infty} (-1)^k q^{k(2k+1)}.
\]

Therefore, we can write

\[
(2.4) \quad \sum_{n=0}^{\infty} p(2n)q^{2n} = \frac{1}{2} \left(\frac{1}{(q; q)_\infty} + \frac{1}{(-q; -q)_\infty} \right)
\]

\[
= \frac{1}{2(q^2; q^2)_\infty} \sum_{k=\infty}^{\infty} (1 + (-1)^k) q^{k(2k+1)}
\]

\[
= \frac{1}{(q^2; q^2)_\infty} \sum_{k=\infty}^{\infty} q^{2k(4k+1)}
\]

\[
= \sum_{n=0}^{\infty} p_{-2}(n)q^{2n} \sum_{k=\infty}^{\infty} q^{2k(4k-1)},
\]

which is equivalent to

\[
(2.5) \quad \sum_{n=0}^{\infty} p(2n)q^n = \sum_{n=0}^{\infty} p_{-2}(n)q^n \sum_{k=\infty}^{\infty} q^{k(4k-1)}.
\]

Using the Cauchy product of two power series, we find that

\[
(2.6) \quad \sum_{n=0}^{\infty} p(2n)q^n = \sum_{n=0}^{\infty} \sum_{k=\infty}^{\infty} p_{-2}(n - k(4k - 1))q^n.
\]

Equating coefficients of \(q^n\), we obtain

\[
(2.7) \quad p(2n) = \sum_{k=\infty}^{\infty} p_{-2}(n - k(4k - 1)).
\]
In a similar fashion, considering
\[
\sum_{n=0}^{\infty} p(2n+1)q^{2n+1} = \frac{1}{2}\left(\frac{1}{(q;q)_\infty} - \frac{1}{(-q;-q)_\infty} \right),
\]
we derive the following expression of \(p(2n+1) \) in terms of \(p_{-2}(n) \):
\[
p(2n+1) = \sum_{k=-\infty}^{\infty} p_{-2}(n - k(4k - 3)).
\]

Now, we consider
\[
\frac{1}{(q;q)_\infty^2} = \frac{1}{(q^2;q^2)_\infty^2} \times \frac{1}{(q;q)_\infty} \times \frac{(q^2;q^2)_\infty^2}{(q;q)_\infty}.
\]

Using (1.1), (1.2), and (1.9) in (2.10), we find that
\[
\sum_{n=0}^{\infty} p_{-2}(n)q^n = \sum_{k=0}^{\infty} p_{-2}(k)q^{2k} \sum_{n=0}^{\infty} p(n)q^n \sum_{j=-\infty}^{\infty} q^{j(2j+1)}.
\]

Using the Cauchy product of power series, we have
\[
\sum_{n=0}^{\infty} p_{-2}(n)q^n = \sum_{n=0}^{\infty} \sum_{j=-\infty}^{\infty} \sum_{k=0}^{\infty} p_{-2}(k)p(n - 2k - j(2j + 1))q^n.
\]

Equating coefficients of \(q^n \) on both sides of (2.11), we obtain
\[
p_{-2}(n) = \sum_{j=-\infty}^{\infty} \sum_{k=0}^{[n/2]} p_{-2}(k)p(n - 2k - j(2j + 1))
\]
\[
= \sum_{j=-\infty}^{\infty} \sum_{k=0}^{[n/2]} p_{-2}(k)p(n - 2k - j(2j - 1))
\]
\[
= \sum_{j=-\infty}^{\infty} \sum_{k=0}^{[n/2]} p_{-2}(k)p(n - 2k - 2j(4j - 1))
\]
\[
+ \sum_{j=-\infty}^{\infty} \sum_{k=0}^{[n/2]} p_{-2}(k)p(n - 2k - 2j(4j - 3) - 1).
\]
Replacing \(n \) by \(2n \) and \(n \) by \(2n + 1 \) in (2.12), we find that

\[
(2.13) \quad p_{-2}(2n) = \sum_{j=-\infty}^{\infty} \sum_{k=0}^{n} p_{-2}(k)p(2n - 2k - 2j(4j - 1))
+ \sum_{j=-\infty}^{\infty} \sum_{k=0}^{n} p_{-2}(k)p(2n - 2k - 2j(4j - 3) - 1)
\]

and

\[
(2.14) \quad p_{-2}(2n + 1) = \sum_{j=-\infty}^{\infty} \sum_{k=0}^{n} p_{-2}(k)p(2n + 1 - 2k - 2j(4j - 1))
+ \sum_{j=-\infty}^{\infty} \sum_{k=0}^{n} p_{-2}(k)p(2n - 2k - 2j(4j - 3)).
\]

Using (2.7) and (2.9) in (2.13) and (2.14), we arrive at (1.12).

3. New recurrences for \(p(n) \) and \(q(n) \).

Theorem 3.1. For each nonnegative integer \(n \), we have

\[
(3.1) \quad \sum_{k=0}^{\infty} (-1)^{k+n} (2k + 1) p(n - k(k + 1)) = \begin{cases} (-1)^{\ell+m} & \text{if } n = \ell(3\ell - 1)/2 + 2m(3m - 1), \\ 0 & \text{otherwise}, \end{cases}
\]

where \(\ell \) and \(m \) are integers.

Theorem 3.2. For each integer \(n \geq 0 \), we have

\[
(3.2) \quad \sum_{k=0}^{\infty} (-1)^{k} q \left(n - k\frac{3k - 1}{2} \right) = \begin{cases} (-1)^{\ell} & \text{if } n = \ell(3\ell - 1), \\ 0 & \text{otherwise}, \end{cases}
\]

where \(\ell \) is an integer.

Proof of Theorem 3.1. We have

\[
(-q; -q)_{\infty} = \frac{(q^2; q^2)_{\infty}^3}{(q; q)_{\infty}(q^4; q^4)_{\infty}},
\]
that is,
\[
\frac{(q^2; q^2)_\infty^3}{(-q; -q)_\infty} = (q; q)_\infty (q^4; q^4)_\infty.
\]
Using (1.10) and (1.11) in the above equation, we obtain
\[
\sum_{n,k=0}^{\infty} (-1)^{k+n}(2k + 1)p(n)q^{n+k(k+1)}
= \sum_{\ell,m=-\infty}^{\infty} (-1)^{\ell+m}q^{\ell(3\ell-1)/2+2m(3m-1)}.
\]
Result (3.1) follows from (3.3) by extracting like powers of \(q\).

Proof of Theorem 3.2. We write
\[
(q; q)_\infty = (q; q^2)_\infty (q^2; q^2)_\infty,
\]
which is equivalent to
\[
\frac{1}{(q; q^2)_\infty}(q; q)_\infty = (q^2; q^2)_\infty.
\]
Substituting (1.3) and (1.10) into (3.4), we find that
\[
\sum_{n=0}^{\infty} q(n)q^n \sum_{k=-\infty}^{\infty} (-1)^k q^{k(3k-1)/2} = \sum_{\ell=-\infty}^{\infty} (-1)^\ell q^{\ell(3\ell-1)},
\]
from which the result (3.2) follows.

4. Relation connecting \(p(n)\) and \(q_o(n)\).

Theorem 4.1. For each \(n \geq 0\),
\[
\sum_{k=-\infty}^{\infty} p\left(\left\lfloor \frac{n}{2} \right\rfloor - k(12k - 3 + (-1)^n2)\right)
- \sum_{k=-\infty}^{\infty} p\left(\left\lfloor \frac{n}{2} \right\rfloor - k(12k + 14 + (-1)^n3) - 4 - (-1)^n2\right) = q_o(n).
\]
Proof. Equation (1.10) can be expressed as

\[(4.2) \quad (q; q^2)_\infty = \frac{1}{(q^2; q^2)_\infty} \sum_{k=-\infty}^{\infty} (-1)^k q^{(3k-1)/2}.
\]

Replacing \(q\) by \(-q\) in (4.2), we obtain

\[(4.3) \quad (-q; q^2)_\infty = \frac{1}{(q^2; q^2)_\infty} \sum_{k=-\infty}^{\infty} (-1)^k (3k+1)/2 q^{(3k-1)/2}.
\]

However, we have

\[
\sum_{n=0}^{\infty} q_o(2n) q^{2n} = \frac{(q; q^2)_\infty + (-q; q^2)_\infty}{2} \]
\[
= \frac{1}{2(q^2; q^2)_\infty} \sum_{k=-\infty}^{\infty} ((-1)^k + (-1)^k (3k+1)/2) q^{(3k-1)/2}
\]
\[
= \frac{1}{(q^2; q^2)_\infty} \left(\sum_{k=-\infty}^{\infty} q^{2k(12k-1)} - \sum_{k=-\infty}^{\infty} q^{2k(12k+17)+12} \right),
\]

which is equivalent to

\[
\sum_{n=0}^{\infty} q_o(2n) q^n = \sum_{n=0}^{\infty} p(n) q^n \left(\sum_{k=-\infty}^{\infty} q^{k(12k-1)} - \sum_{k=-\infty}^{\infty} q^{k(12k+17)+6} \right).
\]

Using the Cauchy product of two power series, we find that

\[(4.4) \quad \sum_{n=0}^{\infty} q_o(2n) q^n = \sum_{n=0}^{\infty} \sum_{k=-\infty}^{\infty} p(n-k(12k-1)) q^n
\]
\[
- \sum_{n=0}^{\infty} \sum_{k=-\infty}^{\infty} p(n-k(12k+17) - 6) q^n.
\]

Equating coefficients of \(q^n\) on both sides of (4.4), we obtain

\[(4.5) \quad q_o(2n) = \sum_{k=-\infty}^{\infty} p(n-k(12k-1)) - \sum_{k=-\infty}^{\infty} p(n-k(12k+17) - 6).
\]
By taking
\[\sum_{n=0}^{\infty} q_o(2n+1)q^{2n+1} = \frac{(-q;q^2)^{\infty} - (q;q^2)^{\infty}}{2}, \]
we also find in a similar fashion that
\[(4.6) \quad q_o(2n+1) = \sum_{k=\infty}^{\infty} p(n-k(12k-5)) = \sum_{k=\infty}^{\infty} p(n-k(12k+11)-2). \]
Combining (4.5) and (4.6), we arrive at (4.1).

Example 4.2. If \(n = 23 \),
\[p(11) - p(8) - p(9) + p(4) = 9, \]
and \(q_0(23) \) equals 9 since the nine partitions in question are:
\[
\begin{align*}
23, & \quad 19 + 3 + 1, \quad 17 + 5 + 1, \\
15 + 7 + 1, & \quad 15 + 5 + 3, \quad 13 + 9 + 1, \\
13 + 7 + 3, & \quad 11 + 9 + 3, \quad 11 + 7 + 5.
\end{align*}
\]

It would be interesting to find the recurrence relation for a \(t \)-tuple partition function denoted by \(p_{-t}(n) \), which would lead to a generalization of (1.8) and (1.12).

Acknowledgments. The authors would like to thank an anonymous referee for helpful comments. The first author would like to thank Prof. N.D. Baruah for information about the article [4] in a GIAN course at Tezpur University.

REFERENCES

Bangalore University, Central College Campus, Department of Mathematics, Bengaluru-560 001, Karnataka, India and M.S. Ramaiah University of Applied Sciences, Department of Mathematics, Peenya Campus, #470-P, Peenya Industrial Area, Peenya 4th Phase, Bengaluru-560 058, Karnataka, India

Email address: gireeshdap@gmail.com

Bangalore University, Central College Campus, Department of Mathematics, Bengaluru-560 001, Karnataka, India

Email address: msmnaika@rediffmail.com